Equal Sums of Like Powers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New results in equal sums of like powers

This paper reports on new results for the equation

متن کامل

Equal sums of four seventh powers

In this paper, the method used to find the smallest, nontrivial, positive integer solution of a1 + a 7 2 + a 7 3 + a 7 4 = b 7 1 + b 7 2 + b 7 3 + b 7 4 is discussed. The solution is 149 + 123 + 14 + 10 = 146 + 129 + 90 + 15. Factors enabling this discovery are advances in computing power, available workstation memory, and the appropriate choice of optimized algorithms. Introduction Diophantine...

متن کامل

Simultaneous equal sums of three powers

Using a result of Salberger [9] we show that the number of non-trivial positive integer solutions x0, . . . , x5 6 B to the simultaneous equations x0 + x c 1 + x c 2 = x c 3 + x c 4 + x c 5, x d 0 + x d 1 + x d 2 = x d 3 + x d 4 + x d 5, is o(B) whenever d > max{2, c}. Mathematics Subject Classification (2000): 11D45 (11D41, 11P05)

متن کامل

On equal sums of ninth powers

In this paper, we develop an elementary method to obtain infinitely many solutions of the Diophantine equation x1 + x 9 2 + x 9 3 + x 9 4 + x 9 5 + x 9 6 = y 9 1 + y 9 2 + y 9 3 + y 9 4 + y 9 5 + y 9 6 and we give some numerical results.

متن کامل

Equal sums of like polynomials

Let f ∈ Z[x] be a polynomial of degree d. We establish the paucity of non-trivial positive integer solutions to the equation f(x1) + f(x2) = f(x3) + f(x4), provided that d ≥ 7. We also investigate the corresponding situation for equal sums of three like polynomials. Mathematics Subject Classification (2000): 11D45 (11P05)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1949

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500002698